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What’s MedShapeNet?

de-facto benckmark dataset: shape completion, retrieval/classification, 3D shape 

reconstruction…

ShapeNet: 3D CAD models of real-world objects: chair, desk, car, airplane…

https://shapenet.org/ 

MedShapeNet: (1) A medical version of ShapeNet. (2) A repository of 3D models of real human 

anatomies: heart, lung, liver, kidney…  (3) extracted from imaging data of real patients

normal                                                     pathological

https://medshapenet.ikim.nrw/ 

https://shapenet.org/
https://medshapenet.ikim.nrw/


3D Shape Representations

[1] Hoang, L., et. al., A deep learning method for 3D object classification using the wave kernel signature and a center point of the 3D-triangle mesh. In Electronics (2019)

gray-scale 2D/3D medical images

CT MRI US

from left: the Stanford bunny model represented as point clouds, voxel occupancy grids, meshes (image from [1])
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voxelization
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implicit surfaces 

(x,y,z) + point connection

• different data structures
• different processing algorithms
• convertible to each other 
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V.   Limitations and future plans



I. Shape Acquisition: Public Challenges and Datasets

• Biomedical image segmentation challenges (MICCAI, ISBI)
• Publicly available datasets (e.g., TCIA, Scientific Data)
• Quality-assured ground truth segmentations, and are 

naturally represented as binary voxel occupancy grids



I. Shape Acquisition: Whole-body Segmentations

[1] Wasserthal, J., et al., TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv preprint arXiv:2208.05868 (2022).

• Totalsegmentor [1]
• 1204 whole-body CT scans (90% training, 5% validaiton, 5% test)
• Each scan provides annotations for 104 anatomies
• Manual annotation is labor-intensive and impractical 
• nnU-Net automatic segmentation + manual refinement, 

iteratively increase te number of CT scans
• Not all segmentations are quality-checked
• Public access: https://zenodo.org/record/6802614  

segmentations (voxel occupancy grids)                                                                                        3D models

https://zenodo.org/record/6802614


I. Shape Acquisition: Whole-body Segmentations

[1] Jaus, A., Seibold, C., et al. "Towards unifying anatomy segmentation: Automated generation of a full-body ct dataset via knowledge aggregation and anatomical guidelines." arXiv:2307.13375(2023)

• 533 whole-body CT scans from the autoPET challenge
• each scan provides annotations for 142 anatomies

(1) fully automatic, nnU-Net-based pseudo-labeling method [1]:
• Publicly-available datasets with annotations of different anatomies
•  Private dataset with privately trained models
•  Train a series of nn-unet on these datasets
•  Anatomical rule-based  refinement

(2) label Aggregation: the trained models are applied on the autoPET dataset to generate 
labels of different anatomies, which are aggregated by taking the union of the respective 
predictions

(3) train another nnU-Net using the aggregated whole-body pseudo labels, and apply the 
trained model on the autoPET dataset again to generate uniform whole-body annotations.

whole-body pseudo labels

acknowledgement: Constantin Seibold



I. Shape Acquisition: Synthetic Anatomy Generation with GANs

acknowledgement: Andre Ferreira

• Synthetic data:  widely used for data augmentation in data-driven research.
• Generate synthetic brain tumors for 27390 brains extracted from the Brats challenge dataset, using Generative Adversarial Networks (GANs).
• Future work: include the synthetic shapes of other anatomies in MedShapeNet. 

original

synthetic

A S

C3D

original

A S

C3D

augmented

A: axial, S: sagittal, C: coronal 



I. Shape Acquisition: 3D Scanning & Surgical Instruments

3D scanners

• use structured light 3D scanners to scan (digitalize) surgical instruments, and create 3D instrument models
• structured light 3D scanners can also be used to scan humans (future work: build a databse of 3D digital human models)
• more details about 3D scanning: https://xrlab.ikim.nrw/ 

acknowledgement: Gijs Luijten

https://xrlab.ikim.nrw/


II. How Are These Shapes Annotated?

skull face 

skin (outside) skeleton+organ (inside) 

? ?
face  (40 y) face  (60 y)(20 y)

input 

expected output 

use paired data to train supervised learning algorithms

• Annotations: expected output of a learning algorithm w.r.t a specific input  (paired data) 
• Two types of data: shape data and patients‘ meta data (pathology, age, gender, etc.)

o Discriminative: shape classification (anatomy category, pathological condition)
o Reconstructive: shape reconstruction 
o Variational: conditional shape reconstruction (conditioned on age or a pathology)

• Future work: provide more annotations by extracting more meta information from the 
source imaging datasets



III. Online Interface: Shape Search, Visualization and Download

• MedShapeNet has over 100K shapes, occupying around 2TB of storage
• Online interface:

o (A) a search box to find individual shape by name (e.g., instrument, liver, brain, kidney) or by pathology (e.g., tumor)
o (B) display a selected shape in 3D, and download it
o (C) download all the shapes belonging to the same anatomy category (e.g., liver) at once 
o (D) download the entire database (~2TB, a lot more to be uploaded)

• Separate shape storage (sciebo, ~2TB) from website server (free streamlit server, 1GB RAM)
• Disclaimer: due to space limitation, not all shape data described in the MedShapeNet paper are available for search & download on the interface

acknowledgement: Alexander Brehmer, Lukas Heine, Jianning Li, Enrico Nasca

(A)                                        (B)                                                          (C)                  (D) 

permanent url: https://medshapenet.ikim.nrw/,   temporary url: https://medshapenet-ikim.streamlit.app/ 

https://medshapenet.ikim.nrw/
https://medshapenet-ikim.streamlit.app/


III. Online Interface: search queries

limitation: allow only one key-word (liver, heart, stomach, kidney…)

a non-inclusive list of single-word search queries

.html file to view the 3D model locally



Agenda

I.    Shape acquisition

 

II.   Shape annotation

III.  A web interface to browse and access the data

IV. Medically-oriented use cases of MedShapeNet

o Multi-class anatomy completion (shape completion / inpainting)

o Forensic facial reconstruction (shape completion / inpainting)

o Skull reconstruction (shape completion / inpainting)

o Brain tumor screening (shape classification)

o Anatomy education in augmented reality (AR) 

V.   Limitations and future plans



[1] Li, J., et al., Anatomy Completor: A Multi-class Completion Framework for 3D Anatomy Reconstruction. arXiv preprint arXiv:2309.04956 (2023)

IV. Use Cases 1: Multi-class Anatomy Completion

lung heart spleen stomach pancreas spine rib cage liver kidney aorta autochthon muscles pulmonary artery

• 12 anatomies (12 classes): lung, heart, spleen ...
• Learn a many-to-one mapping (3D auto-encoder)
• Reconstruct several missing anatomies, or a specific one
• Applications:

o generate pseudo labels for whole-body segmentation
o automatic 3D organ modeling

• More details: [1]
• MICCAI workshop: October 8th, 2023, Vancouver, Canada

input prediction input prediction

…
randomly remove anatomies (multiple inputs)

several random anatomies are missing

one specific anatomy is missing

2.4%

4.3%

1.7%

1.2%

combined

https://arxiv.org/abs/2309.04956


IV.  Use Cases 3: Skull Reconstruction

manual skull repair (cranial implant design)
◼ highly subjective
◼ requires costly 3D software
◼ time-consuming

input prediction groundtruth
prediction input

facial bone reconstruction cranium bone reconstruction

automatic skull repair: fast and data-driven (aesthetic)

[1] Li, J., et al., AutoImplant 2020-first MICCAI challenge on automatic cranial implant design. IEEE TMI (2021)                                                                                                            
[2] Li, J., et al., Towards clinical applicability and computational efficiency in automatic cranial implant design: An overview of the AutoImplant 2021 cranial implant design challenge. Medical Image Analysis (2023)



IV. Use Cases 4: Brain Tumor Screening

gray-scale (skull-stripped) brain MRIs brain shapes (binary voxel occupancy grids)

• It is possible to distinguish between healthy and tumorous brains without voxel information
• Tumors can induce changes of some shape features of the brains
• Healthy versus tumorous brains (volume differences are statistically significant)
• Male versus female brains (volume differences are statistically significant)

healthy tumorous healthy tumorous



Benefits of using shape data over imaging data: computational efficiency
spatial sparsity of manifold/shape data

sparse convolutions [1] 

3D imaging 
data (cubic 
growth)

3D shape data 
(near linear 
growth)

memory occupancy (y-axis) w.r.t. resolution (x-axis) [2]

• Skull reconstruction: sparse convolutional neural networks (SCNN) [2]
• Forensice facial reconstruction: SCNN
• Brain shape classification: SCNN, PointNet, PointCNN
• Other computationally efficient algorithms: O-CNN [3], OctNet [4]

dense convolution sparse convolution

axial view of a skull (most voxels are empty)

[1] Graham, B. and Van der Maaten, L., 2017. Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307.
[2] Li, J., Gsaxner, C., Pepe, A., Schmalstieg, D., Kleesiek, J. and Egger, J., 2022. Sparse Convolutional Neural Networks for Medical Image Analysis. TechRixv techrxiv.19137518.
[3] Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y. and Tong, X., 2017. O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions On Graphics (TOG)
[4] Riegler, G., Osman Ulusoy, A. and Geiger, A., 2017. Octnet: Learning deep 3d representations at high resolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition

brain point cloudsoctree (image from wikipedia)



Li, J., Gsaxner, C., Pepe, A., Schmalstieg, D., Kleesiek, J. and Egger, J., 2022. Sparse Convolutional Neural Networks for Medical Image Analysis. TechRixv techrxiv.19137518.

Sparse CNN - 3D skull shape reconstruction  (shape completion)

Dice  similarity Coefficient

Reconstruction error (%)

comparison:  memory usage wrt. resolution

voxel grid resolutions  (Z: axial dimension):

(a) 642x(Z/8) (model1)

(b) 642x(Z/8) (model2)

(c) 1282x(Z/4) (model1)

(d) 1282x(Z/4) (model2)

(e) 2562x(Z/2)

(f) 5122xZ

model1 (0.435M params)

model2 (18.14M params)

Hardware: standard desktop GPU with 24GB RAM

input          predictions   ground truth



Sparse CNN - 3D shape super-resolution (SR) 

Li, J., Gsaxner, C., Pepe, A., Schmalstieg, D., Kleesiek, J. and Egger, J., 2022. Sparse Convolutional Neural Networks for Medical Image Analysis. TechRixv techrxiv.19137518.

interpolation

SR
input

prediction

• increase the resolution of the low-resolution shapes
• train a sparse-CNN based SR network to learn a mapping between low- and high-quality skull shapes
• the reconstruction quality can be substantially improved with an additional SR step after interpolation

DSC
reconstruction error (%)

interpolation
SR



Sparse CNN - 3D shape super-resolution (SR) in medical image segmentation 

Li, J., Gsaxner, C., Pepe, A., Schmalstieg, D., Kleesiek, J. and Egger, J., 2022. Sparse Convolutional Neural Networks for Medical Image Analysis. TechRixv techrxiv.19137518.

voxel occupancy rate (VOR) and the memory 

usage (in GB) during training and inference 

of a SR network

heart (green), aorta(yellow), trachea (blue) and esophagus (red) 
from the SegTHOR challenge. CT scan resolution: 512x512xZ

1283

5122xZ

5122xZ

output from a dense 
segmentation network

interpolation results (output of 
interpolation, input of SR network)

sparse cnn-based super-results 
(output of a SR network)

interpolation

SR



Shape/Geometric features and voxel features

• Gray-scale voxel features might be redundant for some applications: (brain) tumor screening

• Some applications do not require gray-scale voxel information: skull reconstruction, facial reconstruction

Shape feature: jaggedness, volume, elongation, curvature, boundary, (surface, curve) continuities/smoothness, etc.
Voxel features: voxel intensity (gray-scale), etc 

gray-scale brain voxels geometric shape of a brain

• Voxels features can be indispensable for some applications: tumor infiltration maps 

predictive maps calculated over gray-scale MRIs, indicating probability of tumor infiltration

• The role voxel and shape features play remains to be investigated
o  substance use disorder: cocaine use disorder, alcohol use disorder
o  cognitive impairment: mild cognitive impairment, Alzheimer's disease
o  a combination of voxel and shape features?



IV. Use Cases 5: Anatomy Education in Augmented Reality (AR)

Microsoft Hololens 2

first-person (students‘) view third-person (teachers‘) view

acknowledgement: Gijs Luijten, Christina Gsaxner, Kathrin Krieger 

articulated hands hand rays

virtual reality (VR)

• Import whole-body anatomies (from a whole-body segmentation) into an augmented reality environment
• Anatomies can dissembled and reassembled (like a lego puzzle), by articulated hand or hand rays
• Multiuser mode: students (first-person view) and teachers (third-person view) can share the same scene, which makes the teaching experience more realistic
• More details about AR/VR: https://xrlab.ikim.nrw/  

https://xrlab.ikim.nrw/


IV. Limitations and Future Plans

1. Shape acquisition & annotation
o Collect more shapes: quality-check of shape data
o Provide more annotations: consistency check 
o Redesign the naming convention of the shape files: more compact, informative and descriptive

2. Hardware & online interface
o Increase storage to upload more shapes
o Upgrade the hosting server of the online interface to allow larger traffic
o Refine the shape search function: precise search with multiple key words, e.g.,  “male” + “brain” + “tumor ”
o Improve user interface: better appearance and more user-friendly

3. Usecases: Establish more use cases and benchmarks

https://github.com/Jianningli/medshapenet-feedback 

Community involvement is vital:
• Report corrupted shape data for removal
• Contribute shapes
• Showcase your own research featuring MedShapeNet 
• Request features of the online interface 
• Codes and benchmark datasets of the previously 

mentioned use cases will be released on this Github 
repository 

https://github.com/Jianningli/medshapenet-feedback
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